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Sustainable Design Analysis of Waterjet Cutting Through Exergy/Energy and Lca 

Analysis 

 Matthew Johnson 

ABSTRACT 

 

 A broad scope analysis of waterjet cutting systems has been developed using 

thermodynamics, life cycle analysis, and biological system comparison. The typical 

assessments associated with mechanical design include measures for performance and 

thermodynamic efficiency. Further analysis has been conducted using exergy, which is 

not typically incorporated into design practices. 

 Exergy measures the effectiveness of a process with respect to a base state, 

usually that of the systems surroundings. Comparing Gibbs free energy of biological 

processes to exergy efficiency has served to illustrate the need for various levels of 

comparison. Each biological process used in this comparison correlates to a different type 

of mechanical process and level of complexity. Overall, biological processes display 

similar properties to mechanical systems in that simpler systems are more energy 

efficient.  

 In order to determine accurate efficiency and effectiveness values for a 

mechanical process, in this case waterjet cutting, a set of thermodynamic models was 
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established to account for energy uses. Various output force and velocity models have 

been developed and are used here for comparison to assess output efficiencies with "no 

loss" models used as a lossless base. Experimental testing was then conducted using a 

simple nozzle and a pressure washer with 2 other diameter nozzles. The most energy 

efficient system used a turbojet nozzle. It was also the most efficient sustained system 

with energy inputs. However, it had a much lower exergy efficiency compared to the 

other systems. This implies that it could be significantly improved by more adequately 

utilizing the energy provided. 

 An effort to assess the green nature of pressurized water systems was done 

through use of an Economic Input/Output Life Cycle Analysis (EIO-LCA). The EIO-

LCA is designed to assess processes for greenhouse gas emissions and total power 

consumption across the life of a system. Calculations showed that increases in power 

consumption result in much higher greenhouse gas emissions per unit time than increases 

in water consumption. Financial cost however showed an opposite trend due to the much 

greater cost of water with regard to consumption rates in each system. The most "green" 

system used only a nozzle with no power consumption.  
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Chapter 1: Introduction 

 

 Waterjet cutting is considered a highly efficient manufacturing method. The 

process involves the use of highly pressurized water as a cutting medium which imparts 

negligible amounts of heat to the work piece being cut. As such, the parts created by this 

form of manufacturing incur no change in crystal structure typically caused by heat 

generated in other metal removal processes. 

 The analysis of such a manufacturing process from an exergy standpoint may 

serve as a preliminary indicator as to how effective it is. Existing models of this process 

will be extended to determine both the thermodynamic efficiency and effectiveness of a 

waterjet machining process. The model will then be assessed for accuracy through 

experimental trials and then for evaluating its usefulness in identifying key parameters 

that affect the efficiencies and effectiveness. 

 Manufacturing process comparison to cellular processes may also be useful in 

determining sustainable design metrics. Cellular processes are typically assessed on a 

Gibbs free energy basis, which is similar in methodology to an exergy analysis. As some 

biological systems are highly efficient in the use of available resources while minimizing 

waste, a comparative analogy between a waterjet and variable scale cellular systems 

could prove invaluable in determining a set of sustainable design metrics for mechanical 
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systems which may result in higher efficiencies, effectiveness and better resource 

utilization while minimizing ecological impact and waste.  Similarly, a life cycle analysis 

of waterjet cutting should also identify which aspects of the process have the most impact 

on those economical and ecological facets. 
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Chapter 2: Background 

 

 While the focus of this analysis is rooted in mechanical engineering, there are 

many cross-disciplinary terms and ideas which will be introduced. This background is 

meant to act as a primer for introducing the knowledge required to relate the ideas being 

presented. 

 

2.1. Waterjet Cutters 

 The advent of what may be considered modern waterjet cutting brought with it 

what can only be described as an amalgam of manufacturing possibilities. Modern 

waterjets use pressures in the range of 200 – 800 MPa with exit velocities which may 

approach 1200 m/s.1-10 Water at that velocity acts in much the same way as a saw, cutting 

through very hard materials. Cutters are usually attached to a number of servos which 

allow for computer numberically controlled (CNC)  machining.1 The most influential 

aspect of using a waterjet cutter over standard machining alternatives, is that the water 

stream does not heat the material during cutting.1 This prevents the typical heat affected 

zones and possible sub-surface damage which may be present after traditional cutting. As 

such, material properties can be held at nominal values and are as such, much more likely 

to act as designed. 
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2.1.1. Crack Propagation Model 

 For waterjet cutting, material removal occurs by crack propagation.1,2,5,7,9 

Materials science dictates that in order for cracking to occur, a defect or dislocation in an 

affected material must be present. In other words, materials which have failed from the 

extenuation of a crack already had a defect present, such as in the form of a 

microstructural anomoly. Waterjets serve to promote crack growth by imparting localized 

pressure fields on a surface, exploiting the nature of these defects and eventually cutting 

completely through the material.1 Typically, more brittle materials fail under this 

mechanism.1 

 

2.1.2. Abrasive Waterjet 

 An abrasive waterjet acts similarly to a standard waterjet in that the force 

imparted comes from a combination of stream velocity and pressure. Abrasive waterjets 

differ in that abrasive additives are mixed into the water stream, typically an abrasive 

garnet in the range of  80 grit.1-10 The addition of hardened particles acts to increase 

stream cohesion and impart higher levels of kinetic energy.1-10 The addition of garnet for 

instance, will allow a water stream to cut through very hard and brittle materials such as 

titanium with very low resource utilization. It has also been suggested that the addition of 

abrasive particles may serve to decrease the cost per unit length when cutting materials 

through reduction in the water and electricity required to cut a medium.2 A detailed 

diagram of a standard abrasive waterjet cutting head assembly is present in Figure 1. 
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Figure 1: Waterjet Cutter Head; 1 - high-pressure water inlet, 2 - jewel (ruby or 
diamond), 3 - abrasive (garnet), 4 - mixing tube, 5 - guard, 6 - cutting water jet, 7 - cut 

material. Source: Zureks, Waterjet Cutter Head, 
http://commons.wikimedia.org/wiki/File:Water_jet_cutter_head.svg 
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2.1.3. Impingement Failure Model 

 The impingement model for material removal details plastic deformation as the 

cause of primary failure.1 Ductile materials such as metals typically undergo this type of 

failure during waterjet cutting.1,5,9 Evidence of this has been shown in a variety of papers 

whereby an abrasive waterjet embeds partiles of abrasive in the metal. This acts to cause 

localized areas of highly strain hardened material. The material, in essence, surrounds the 

embedded particle in a sheath. The bombardment continues this trend until the material 

has completely flown out of the path of stream travel or until the stream and abrasives 

have broken through following impact due to cracking.1,5,9 Because of the likelihood of 

embedding particulates rather than removing material, a non perpendicular angle of 

attack is sometimes used, whereby knicks in the cut zone are created due to glancing 

impacts.1 

 

2.2. Design Methodology 

 Common practice for design of modern technology is performance based.11-18 In 

essence, this means that the goal of design is to achieve a particular performance level 

with product efficiency. In this respect, other design considerations such as resource 

utilization or environmental impact are often times only taken into account when deemed 

an economical shortcoming. 
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2.2.1. Efficiency 

 Efficiency is typically assessed on an output vs. input basis.11 In other words, 

effeciency for a pump is merely a performance measurement which defines the ratio of 

output to input as defined by Equation 2-1. The first law of thermodynamics then dictates 

that output can never exceed input, and as such, the ratio must always fall between 0 and 

1. For a value of 1, all energy input would be exchanged as output whereas for a value of 

0, all energy input would be lost. The amount of energy lost can be the result of friction, 

heat transfer to the surroundings,  or improperly designed components. These losses all 

act to limit the highest efficiency a proccess can achieve, according to a first law 

analysis.11 

       (2-1) 

 

2.2.2. Effectiveness 

 Effectiveness, or Exergy efficiency, uses the standard formula for efficiency but 

also takes into account exergy destruction. Effectiveness assesses the quality of energy 

used with regard to the maximum obtainable work in a system.11 In essence, the system is 

being compared to an ideal Carnot engine’s use of energy. This means that the energy 

used is being compared to the maximum potential of heat energy being used in the form 

of work.17 Equation 2-2 defines exergy destruction, or irreversibilities as surrounding 

temperature multiplied by the change in entropy from entry to exit.11,17 

      (2-2) 
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2.2.3. Sustainable Design 

 The idea of sustainable design is not a new one. One recognized application of 

such a design methodology is intended to minimize negative environmental impact with 

regard to the 12 Principles of Green Engineering. 18 The 12 principles are listed as 

follows: 

1. Designers need to strive to ensure that all material and energy inputs and outputs 

are as inherently nonhazardous as possible. 

2. It is better to prevent waste than to treat or clean up waste after it is formed. 

3. Seperation and purification operations should be designed to minimize energy 

consumption and materials use. 

4. Products, processes, and systems should be designed to maximize mass, energy, 

space, and time efficiency. 

5. Products, processes, and systems should be ‘output pulled’ rather than ‘input 

pushed’ through the use of energy and materials. 

6. Embedded entropy and complexity must be viewed as an investment when 

making design choices on recycle, reuse, or beneficial disposition. 

7. Targeted durability, not immortality, should be a design goal. 

8. Design for unnecessary capacity or capability (e.g., ‘one size fits all’) solutions 

should be considered a design flaw. 
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9. Material diversity in multicomponent products should be minimized to promote 

disassembly and value retention. 

10. Design of products, processes, and systems must include integration and 

interconnectivity with available energy and materials flows. 

11. Products, processes, and systems should be designed for performance in a 

commercial ‘afterlife.’ 

12. Material and energy inputs should be renewable rather than depleting. 

 

2.2.3.1. Life Cycle Analysis 

 The intent of a life cycle analysis is to determine not only economic impact but 

also environmental impact over the life of a process.15 Economic impacts cover the 

financial costs assessed either per unit time for usage or for the total life if known. Some 

of the relevant variables include cost of the object, power usage, chemical usage, and any 

relevant maintence costs. Environmental impacts cover the creation of any environmental 

hazards as a result of the process. These may include but are not limited to greenhouse 

gasses or wastes.15 
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2.3. Biological Systems 

2.3.1. Organelle 

At the most basic level, an organelle may be considered as one of the many 

specialized components that make up a typical eukaryotic cell. Each eukaryotic cell, also 

known as an animal cell, has a standardized make up. This does not change with 

differentiation of cell types. In other words, a muscle cell will have the same organelles 

as an epithelial cell, albeit in possibly different concentrations.19 Table 1 lists a number of 

these organelles and their functions within a cell.19 

Table 1: Common Organelles and Associated Functions 

Organelle Function19 

Golgi Apparatus 
Process all incoming proteins, enzymes, and lipids while at the 

same time also controlling their export. 

Lysosomes 
Break down particles, other cells, and old organelles for 

reutilization of resources. 

Nucleus 

Acts as the brain of the cell, serving to moderate and control 

internal resources as well as external actions. 

Mitochondrion Serve to create ATP as a fuel to power cellular functions. 

Ribosomes Convert nucleic acids into proteins using mRNA as a template. 
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2.3.2. Cell 

 The cell is the smallest living biological entity. Cells are the basic building blocks 

for any more complex organism.19 While cells vary in function and size, each has a 

number of  the same basic organelles.19 Figure 2 details the general makeup of a 

eukaryotic (animal) cell with some of these common organelles identified. 

 

Figure 2: Animal Cell19 
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2.3.3. Organ 

 Biology defines an organ  as a component or system which is made up of a 

collection of tissues and cells with a common purpose.19 Organs typically have a primary 

tissue type which is specific to the organ  as well as secondary general tissue types which 

are common to most organ types. Organs are similar to organelles in that they operate to 

serve a larger system such as an organism.  

 

2.3.4. Gibbs Free Energy 

 Gibbs free energy is a term used in the biochemistry field to define the second law 

of thermodynamics.19 In this respect, it is similar to exergy in that they both measure how 

much energy a system can utilize if the conversion energy was directly from heat to 

work. Gibbs free energy is assessed with regard to the system temperature and the change 

in enthalpies and entropies from state 1 to 2.19 Rather than measure the actual amount of 

energy available, it merely measures the change in energy availability or ΔG.19 The 

standard Gibbs free energy equation is defined in Equation 2-3. A more applicable 

definition for the purposes of comparison is defined in Equation 2-4. 

      (2-3) 

  (2-4)  
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Chapter 3: Thermodynamic Model 

 

 A variety of analyses have been conducted on waterjet cutters which encompass 

its performance aspects. An analysis which assesses both 1st and 2nd law efficiencies has 

not been done however. As such the implementation of such an analysis requires the use 

of model designed to assess the energy usage with regard to performance. Most models 

for waterjet cutting ignore the energy requirements associated with increased water 

pressurization and as so, they are not entirely relevant to determining efficiency or 

effectiveness. 

 A typical method for assessing energy output and requirements for a water stream 

is to analyze the changes in enthalpy, kinetic energy, and potential energy. Equation 1 

identifies the basic equation for assessing these terms. The ṁ term is mass flow rate in 

kg/s and indicates that the stream will be measured with respect to time. Figure 3 displays 

an ideal system for use with this model and the required measurements. 

    (3-1) 
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Figure 3: Model System & Measurements 

Wis refers to the isentropic or "no loss" work associated with a stream and is 

measured in J/s or Watts. The h1 and h2s terms refer to the specific enthalpy associated 

with the stream at entry (point 1) and exit (point 2). Typically, specific enthalpy is 

assessed on a J/kg basis and can be measured by temperature and pressure relationships 

associated with a fluid. In a typical waterjet system however, there is a minimal increase 

in temperature whereas pressure may increase drastically.  

To more accurately assess such a relationship, an equation for determining 

specific enthalpy from internal energy, pressure, and specific volume will be used. 



www.manaraa.com

15 

       (3-2) 

 

Specific volume is denoted by υ and is assessed on a m^3/kg basis. P denotes pressure in 

Pascals, and u represents internal energy in J/kg. By replacing specific enthalpy with 

Equation 3-2 in Equation 3-1, a difference in pressures with respect to specific volume 

can be found. Internal energy should most likely remain constant so long as water is 

considered incompressible. This demonstrates that an increase enthalpy will result not 

from temperature increase, but from pressure increase. 

 Vel is used to denote velocity and when paired with mass flow rate, closely 

resembles Equation 3-3, which defines the kinetic energy of an object. This again means 

that the 2nd set of terms in Equation 3-1 is actually a measure for the difference of kinetic 

energy from the entry to exit. When used at just the exit however, Equation 3-3 may be 

used to assess the maximum possible impact force from a water stream at exit velocity. It 

may also be used with the cross sectional area A of the stream to find the pressure of the 

water stream on the impact surface. Force is measured in J/s. 

     (3-3) 

 

 At this point however, another issue arises. There will be a difference between the 

actual impact force and calculated impact force. This occurs due to a variety of issues, 

including that a water stream does not act as a solid object would. A number of factors 

affect how closely a stream of water will act compared to a solid object. Chief among 
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these are Reynolds Number, which defines how laminar or turbulent a stream is, and 

stream pressure, which acts to increase transmissivity. Equation 3-4 defines the Reynolds  

number, Re, at a nozzle exit with diameter D and kinematic viscosity υ. 

      (3-4) 

  

 Finding entry and exit velocities may be easier through base calculation involving 

water density, cross sectional area, and a measured volumetric or mass flow rate. For this 

purpose three relationships have been established. The first (Equation 3-5) relates 

volumetric flow rate to mass flow rate using water density. The second equation 

(Equation 3-6) relates mass flow rate to velocity and cross sectional area using density. 

The third and final relationship (Equation 3-7) may be used to find the relation between 

entry and exit velocities by assuming that mass flow rate in is equivalent to mass flow 

rate out and that density remains constant. 

      (3-5) 

      (3-6) 

     (3-7) 

 

The last of the three terms found in equation 3-1 refers to the difference in 

potential energy. Fortunately, in most systems, the potential energy difference is in fact 

not substantial. This is because, unlike the velocity terms, the heights are not squared. 

This means, at a height difference of even 1 m, the energy lost in a typical waterjet 
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system using roughly 0.1 kg/s mass flow rate would equate to just 0.98 Watts compared 

to the energy input of a standard waterjet cutter being somewhere near 23 kWatts. 

 At this juncture, each of the terms in Equation 3-1 may be assessed using nominal 

values based on constant inputs measured such as mass flow rate, pressure in, and 

geometry of both the entry and exit ports. From Equation 3-7, velocity out may be found 

and input to Equation 3-3. This will yield a lossless force value and associated output 

pressure. Using the pressure and force values in Equation 3-1 should then yield an 

isentropic work value. This is essentially a minimal work required value which signifies 

the lowest possible amount of energy which could be input to create the equivalent 

pressure and output force. 

 Due to losses inherent to any system, this value of isentropic work will never be 

achieved. With that in mind, an efficiency value can be found through the use of 

Equation 3-8. Division of isentropic work values by actual work input will yield an 

efficiency rating.  

       (3-8) 

 

 The overall effectiveness or exergy efficiency of the system may then be 

determined through the addition of a term governing exergy destruction. The exergy 

destruction is based on the surrounding temperature and the differential between entry 

and exit specific entropy values. This term is designed to account for the amount of 

energy which can never be recovered from the exchange of energy occurring within the 
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boundaries of the system. Equation 3-9 shows the basic exergy equation. Equation 3-10 

then shows effectiveness utilizing a comparison between exergy and actual work input. 

 

(3-9) 

 

        (3-10) 

 

 When effectiveness approaches the value calculated as efficiency, it means that 

low amounts of energy are lost in energy conversion. It is important to note that 

efficiency compares losses in energy relevant to a system whereas effectiveness 

compares a system’s energy utilization in so much as various types of energy use carry 

with them a higher transmissivity and innate ability to maintain higher levels of order. 

For this waterjet cutter model, this suggests that the force comes mostly from the 

achievement of higher levels of velocity. Velocity increase is therefore obtained through 

a combination of minimizing nozzle geometry with respect to entry geometry and an 

increase of mass flow rate through use of pressurization. 
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Chapter 4: Experimental Assessment of Thermodynamic Model 

 

To test the validity of the model, an experimental apparatus has been constructed 

with sensors designed to monitor the needed thermodynamic components of the system. 

Among these components are volumetric flow rate, ingoing and outgoing temperature, 

ingoing pressure, and outgoing force. These components may then be used with the 

model to assess efficiencies of the various test systems. 

 The first test system analyzed is that of a simple pressure driven nozzle. 

Essentially, the force to be imparted comes from the change in cross-sectional area from 

the supply hose to the nozzle. The nozzle is roughly 1/30th the size of the supply hose, 

which in turn amplifies the input velocity by 30 times at the output. The nozzle cross-

sectional area is about 6.7E-06 m2. It is important to note the water flow is driven solely 

by standard plumbing water pressure which was measured to be 80 psi.  

 The second and third systems analyzed utilize a pressure washer rated for 1800 

psi output. The difference between systems two and three is the nozzle type used. System 

two uses a slightly divergent nozzle with a 0.125” diameter while system three uses a 

0.175” diameter flat nozzle. The second system has an approximate nozzle cross-section 

ratio of 1/25th the input hose, whereas the third system has approximately a 1/13th ratio.  

Based on Equation 3-7, it is logical to assume that a higher input:output ratio will result 
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in higher velocity output, and as such, higher force output. Table 2 designates the nozzle 

geometry values and input:output ratios. 

 Table 2: Nozzle Dimensions 

 

 Implementation of the model assessment (photos available in Appendix 1: Figure 

18) was conducted with respect to the following procedure and was reiterated for each of 

the three systems being tested: 

1. Mount the force load cell on the target grill with the impact plate affixed on top. 

2. Mount the nozzle assembly such that the stream impact will be perpendicular to 

the load cell. Minimal distance between the nozzle and the impact plate should be 

maintained to minimize velocity losses due to stream dispersion. 

3. Once mounted, the load cell is calibrated in order to zero the force readout while 

the impact plate is affixed. 

4. To measure volumetric flow rate, an inline flow meter is utilized and values are 

recorded on a unit time basis. 

 System 1 System 2 System 3 

Nozzle Diameter (m) 2.921E-03 3.175E-03 4.445E-03 

Nozzle Area (m2) 6.704E-06 7.920E-06 1.552E-05 

Input : Output Area 29.5 25 12.76 
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5. A watts-up meter is used to measure and record power input values. 

6. Before each trial, the force readout is once again zeroed in order to maintain 

accuracy and to assess the maximum burst output for each trial. 

7. Discharge of the water stream should occur until values reach or approximate 

steady state values. Values to record during this period are flow rate, power input, 

force output, surrounding temperature, output stream temperature, and input 

stream temperature. 

8. Efficiencies, exergies, and other values are then calculated from the afore 

mentioned thermodynamic models. 
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Figure 4: Cross Section of Test Stand 
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Figure 5: System Diagram With Sensor Placement 

 The mass flow rates are found by assessing the volumetric flow rate (m3/s) and 

converting to mass flow rate (kg/s) through a relationship described by Equation 3-5. The 

mass flow rate does not necessarily correlate to cross sectional area as denoted by Figure 

6.  Rather, the flow rate is driven up by increased pressurization. 
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Figure 6: Mass Flow Rate Vs. Cross Sectional Area 

 

Individual volumetric flow rates and by extension mass flow rates were found to be 

constant across trials with minimal variability. As such, a mean value was used for each 

system as the basic mass flow rate in the calculation of the other associated variables. 

 Input velocity values were found using the relationship described by Equation 3-

6. These input velocities are directly associated with the geometry of the input hose, mass 

flow rate, and a specific volume value related to the temperature of water. As water is 

considered to be an incompressible Newtonian fluid, the value for specific volume was 

found from thermodynamic tables and used across trials as a constant value. As the mass 

flow rates between each system varied, input velocities also varied correspondingly. Of 
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the three systems defined, system 2 had by far the lowest input velocity as denoted by 

Figure 7. 

 

Figure 7: Input Velocities 

 

 After calculating input velocities, it is a relatively straightforward process to 

determine the exit velocity. Output velocity corresponds to input velocity through the 

flux Equation 3-7. The relation is that of velocity proportional to cross sectional area 

being equivalent for both entry and exit if mass flow rate is held constant. It is interesting 

to note that while system 2 had the lowest input velocity, it is in fact not the lowest output 

velocity. Figure 8 shows the comparison between input and exit velocities with regard to 

each system. 
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Figure 8: Input and Output Velocities 

 

 By using the output velocities, a Reynolds number may be calculated using 

Equation 3-4. Reynolds number identifies each system’s relevant level of laminar or 

turbulent flow. Each system was determined to be turbulent in nature. Table 3 shows the 

Reynolds number calculated in each system using the assumption that each nozzle has a 

very small convergence length before exit. The Reynolds number in these systems 

denotes the turbulent or laminar nature of the streams and will serve as a comparison tool 

in future analyses. 
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Table 3: Reynolds Number Values for Systems 1,2 &3 

 

 The placement of the nozzle with respect to the load cell was such that maximum 

output was achieved. The distance between the nozzle and the load cell impact plate was 

roughly 1 mm. This value was observed to have the highest force ratings across each 

system and nozzle impact from recoil during the initial release of the streams. Initial 

testing showed correlations between exit velocity and impact ratings as expected except 

in the case of system 3. However, upon further inspection it was found that system 3’s 

nozzle opening was higher in the assembly than the others. Where system 1 and system 2 

each had a nozzle that opened directly at the impact plate, system 3 had a circular shroud 

that encased the nozzle and prevented the use of a uniform impact distance. The larger 

distance from stream exit to impact point results in a drastic pressure loss due to a lack of 

stream confinement as well as lower pressure air surrounding the stream.1 Stream 

degradation was also observed further from the exit point and as such, the value for 

stream diameter which is observed at the nozzle exit was used for stream diameter. 

 Force measurements were taken as both peak outputs and sustained values. The 

peak value was typically observed just after stream initiation and may in fact be caused 

by backpressure in the system. For instance, systems 2 and 3 show extreme peak output 

forces, well in excess of the energy available at steady state power consumption. This 

 System 1 System 2 System 3 

Reynolds Number 27715 19404 19923 
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may be explained by the initial power used to bring the supply reservoir up to output 

pressure. Essentially, the peak force observed is a result of prior power input. Figure 9 

shows the peak output values recorded over the course of 5 trials. 

 

Figure 9: Force Output 

 

Sustained values by comparison were measured on a per unit time basis and compared to 

both water usage and power usage. Sustained values were shown to be much lower than 

peak values. Figure 10 shows the average sustained force output in comparison to the 

average peak force output for all three systems as well as a mode whereby no work was 

added to the system. 
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Figure 10: Average Force Outputs 

 

 From this particular point, a variety of models exist for determining output 

pressure. Because the emphasis of this analysis is on impact force, pressure was 

calculated directly from empirically gathered values. As such, pressure was found by 

dividing the measured force by the measured stream diameter as defined by Equation 3-3. 

While this value is almost certainly not the actual output pressure at the nozzle, it was 

determined to be the most useful value for calculating efficiency. It was also posited that 

this value would be closest in nature to what can be described as a transmitted pressure 

associated with the water stream. In other words, this pressure is what a work piece 

would actually experience regardless of how pressurized the stream may be. By 

comparison, a secondary value for pressure was also found and defined as the “No Loss 
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Pressure.” This particular value is found by modeling the water stream as a projectile and 

applying the kinetic energy term in the second half of Equation 3-3 where the velocity 

term is taken as the velocity out found by the flux equation. A comparison of average 

peak, average sustained, and no loss pressure values associated with each of the three 

systems is conveyed in Figure 11. 

 

Figure 11: Pressure Output 

 

 The velocity and pressure values then allow for the calculation of both kinetic 

energy and enthalpy terms. Kinetic energy relies upon the difference between entry and 

exit velocity where as the enthalpy term relies upon the difference between entry and exit 

internal energy, pressure, and specific volume. Because water is modeled as 

incompressible, specific volume is taken as constant. Temperature at the inlet and exit 
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was also measured experimentally as constant. The average enthalpy and kinetic energy 

terms with respect to average power consumption in each system under steady state are 

made available in Table 4. System 1 was not included because an accurate input pressure 

value could not be established while maintaining the same volumetric flow rate.  

Table 4: Work in, Enthalpy, and Kinetic Energy Values for Systems 2 & 3 

 

When the kinetic energy and enthalpy terms are combined, the power required 

can be found, and with it an efficiency value. Because the intent of the study was to 

develop an analysis which would accurately assess a process in continuous action, the 

efficiencies were calculated under sustained conditions for systems 2 and 3. System 1 had 

no direct power input and as such did not qualify to be assessed for efficiency as 

specified by the established model. Table 5 conveys the average power required, actual 

power input, and corresponding efficiency. 

 

 System 2 System 3 

Work in (J/s) 729.60 1246.00 

Enthalpy (J/kg) 249.02 140.47 

Kinetic Energy (J/kg) 53.88 28.85 
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Table 5: Work In, Work Required, and Efficiency Ratings for Systems 2 & 3 

  

Because the values used were based on the impact or transmittable force rather 

than that measured directly at the nozzle, the enthalpy term may have in fact been larger. 

As such, rather than looking at standard efficiencies, a better option may be to look at 

how much force was imparted by the water stream compared to what a solid object might 

do. This will be a comparison of the force out term to calculations of what could be an 

expected force determined from the calculated velocity out which has been designated as 

the impartment efficiency. Measured force outputs and calculated force outputs are used 

to define the kinetic energy transmission efficiency (impartment efficiency) and can be 

found in Table 6. 

 

 

 

 System 2 System 3 

Work in (J/s) 729.60 1246.00 

Work required (J/s) 25.00 20.02 

Efficiency 3.42% 1.61% 



www.manaraa.com

33 

Table 6: Forces and Impartment Efficiency 

  

To determine the effectiveness of the pressure washer, values for internal energy 

and entropy were determined through the use of water property tables. Through the use of 

Equation 3-2 enthalpy was calculated using input and output pressures along with the 

internal energy of the water stream at usage temperature. Entropy was then found using a 

correlated enthalpy value. Calculation of exergy destruction was done through the 

manipulation of Equation 2-2. Total exergy is then found by subtracting exergy 

destruction from the standard work in equation resulting in Equation 3-9. The total 

exergy defines the total energy available with regard to the base state, in this case the 

temperature of the room. When compared to the actual input energy, an exergetic 

efficiency may be found. Figure 12 compares 1st law efficiency (Equation 3-8)  to 2nd law 

effectiveness efficiency (Equation 3-10). 

 System 1 System 2 System 3 

Force Out (N/s) 3.78 2.12 2.22 

Calculated Force 

Out (N/s) 

14.06 4.44 3.43 

Impartment 

Efficiency 26.91% 47.79% 64.78% 
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Figure 12: Energy and Exergy Efficiencies of Systems 2 and 3 

 While each system scales up in terms of cross sectional diameter, the outputs and 

efficiencies do not. This is of particular interest when examining the nozzle geometries. 

System 1 has a flat nozzle head similar in nature to the nozzle in system 3. Unfortunately 

a direct comparison cannot be made because the nozzle to impact distance in system 3 

could not be standardized because of the protective shroud. This particular fact comes 

into play when examining the pressure decrement involved once a turbulent stream 

becomes unconfined. As each system was calculated as highly turbulent, system 3 in 

respect suffers from higher levels of degradation than either of the other 2 systems. 

Fortunately, once steady state was reached, pressures and impact forces were found to be 

similar in nature to system 2. 
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 Sustained force values showed a decrease which correlated to the calculated 

output velocities. In other words, as output velocity increased, so too did unpowered 

force output. When the compressor on the pump was used to increase the pressure on 

systems 2 and 3, substantial gains in output force were noticed. System 1 remained the 

highest total force output. As denoted in Table 6, however, the force out efficiency 

increased as power input increased. This would seem to suggest that increased pressure of 

a stream results in a higher level of imparted velocity. In other words, the stream begins 

to act more as a solid beam pushing on the force sensor rather than splashing against it. 

Looking at the relatively low imparted kinetic energy efficiency led to the thought 

of comparing unpowered kinetic impartment efficiency in Table 7. This particular figure 

conveys how well each nozzle is designed to work without increasing the pressure of the 

water being used. 

Table 7: Unpowered Kinetic Impartment Efficiencies 

 System 1 System 2 System 3 

Unpowered Force 

Out (N/s) 

3.78 0.67 0.20 

Calculated Force 

Out (N/s) 

14.06 4.44 3.43 

Efficiency 26.91% 15.03% 5.70% 
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Chapter 5: EIO-LCA 

 

The environmental impact of waterjet cutter use was assessed using an Economic 

Input/Output – Life Cycle Analysis (EIO-LCA) model. The model chosen was designed 

for the specific case of analyzing processes on a usage or unit time basis. The analysis 

consists of determining resource requirements and assessing the environmental impact of 

their use in the process. 

 The initial step in this analysis is to determine the usage costs associated with the 

waterjet cutting process. In this respect, the primary costs come from the purchase of the 

unit, the cost of water on a volumetric basis, and the electricity consumption in kWatts. 

Table 8 details these costs for each of the three experimental systems tested. The water 

and electricity consumption values were gathered during the experimental assessment. 

Electricity costs were provided by Tampa Electric and are a suggested commercial rate. 

Water costs were provided by the City of Tampa Water Department.  
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Table 8: Resource Consumption & Costs 

 

 

These values then allow for the calculation of total cost per hour of use. 

Electricity and water costs per hour of usage were calculated  by multiplying 

consumption rate by cost. Annual cost could be calculated if an assumed value for daily 

or weekly use was given. At this time, that data is not available. Table 9 shows the hourly 

cost for each system with regard to electricity and water consumption. Interestingly, 

system 2 which was a powered system showed the lowest total cost per hour at just $ 

 System 1 System 2 System 3 

Cost ($) 20.00 200.00 200.00 

Water Consumption 

(gal/hour) 102.84 78.26 112.5 

Electricity 

Consumption 

(kWh) 0 0.73 1.25 

Electricity Cost 

($/kWh) 0.128 0.128 0.128 

Water Cost ($/gal) 0.005 0.005 0.005 
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0.48. This also shows that water cost is much higher per hour usage than the electricity 

required to power the pressure washer. This may not be the case with a waterjet cutter.17 

Table 9: System Resource Costs Per Hour 

 

The EIOLCA software assesses impact based on cost sector performance. The 

intent is to asses, in a specific area, what greenhouse gasses are released as a result of 

economic activity. In other words, by relating the system usage to cost per hour, the 

EIOLCA software makes available a per hour greenhouse gas emission and energy 

consumption value. Higher values are more detrimental to the environment. The emission 

and consumption values for each system based on water cost for the water, sewage, and 

other systems sector are designated in Table 10. The calculated emission and power 

consumption values for each system based on electrical cost assessed in the power 

generation and supply sector are then available in Table 11. Total global warming 

 System 1 System 2 System 3 

Electricity Cost 

($/hour) 0 0.09 0.16 

Water Cost ($/hour) 0.51 0.39 0.56 

Total Cost 

($/hour) 0.51 0.48 0.72 
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potential values and power consumptions for each system are conveyed through Table 

12. 

Table 10: Water Sector Global Warming Potential & Energy Consumption 

 

  

 

GWP 

 (mt CO2 equiv.) 

Energy Consumption 

(TJ) 

System 1 0.000570 0.000001 

System 2 0.000436 0.000001 

System 3 0.000626 0.000001 
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Table 11: Power Supply Sector Global Warming Potential & Energy Consumption 

 

 

Table 12: Total Global Warming Potential & Energy Consumption 

 

GWP 

 (mt CO2 equiv.) 

Energy Consumption 

(TJ) 

System 1 0 0 

System 2 0.00077 0.000009 

System 3 0.001369 0.000016 

 

GWP Total 

 (mt CO2 equiv.) 

Total Energy 

Consumption (TJ) 

System 1 0.000570 0.000001 

System 2 0.001206 0.000010 

System 3 0.001995 0.000017 
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 The distinction between which sectors emit greater amounts of greenhouse gasses 

is important to notice here. While system 2 had the lowest total cost per hour to run, its 

green house gas emissions were second highest. This is due in part to the fact that system 

1 had no direct power consumption. Power consumption, while cheaper cost per hour in 

all cases, produced significantly greater amounts of greenhouse gases. As such, it is 

clearly the case that power supply has a greater negative impact on the environment than 

water consumption in pressurized water systems such as those tested. 

   



www.manaraa.com

42 

 

 

Chapter 6: Discussion 

 

 Thermodynamic efficiency and effectiveness analysis serve to demonstrate how 

well a process or system is performing with respect to the best possible performance 

obtainable. As detailed in Chapter 2, an effectiveness efficiency which approaches a 1st 

law efficiency is indicative of a minimal loss of energy in the form of system 

irreversibilities. Essentially, this means that more of the energy is used and not wasted. In 

this way, it is acceptable to then say that efficiency measures the losses of energy due to 

system parameters whereas effectiveness measures how well the energy was used. 

Increasing entropy of a system typically results in higher losses due to irreversibility and 

as such lower effectiveness. Such a relationship may prove to show that higher 

effectiveness may show a lower level of system wastes and by-products. 

Determinations of both performance and efficiency in the tested systems led to a 

marked cap of available impact potentials. The meaning behind this is in the fact that 

velocity output remains constant thus establishing the maximum kinetic energy output 

available to the system. There are potential differences in actual force output compared to 

maximum force output as a result of stream pressurization. This effectively shows that 

while impartment efficiency increases under higher power input, further output could be 

achieved through the use of better nozzle geometry, most namely lower cross sectional 

area which tends to result in higher output velocity as defined by Equation 3-7. Since 
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only systems 2 and 3 were able to use the pump, an assessment of the two systems from 

unpowered to powered may allow for the reasonable extrapolation of how system 1 

would react under pressurized conditions. Both system 2 and 3 showed higher 

impartment efficiencies using pressurized water. As such, system 1 would most likely 

show an increase in impartment efficiency. Further testing may show that the more 

efficient nozzle designs of system 1 and 3 could show even higher impartment 

efficiencies under pressurized conditions if nozzle-to-impact distance was able to be 

standardized. System 3 would have to be modified to allow for those conditions. 

The idea behind increased impartment efficiency with decreasing energy 

efficiency due to stream turbulence may allow for an optimization to be associated with a 

system. In order to further explore this, a system with variable pressure would have to be 

utilized. A relationship between power input efficiency and the corresponding imparted 

energy efficiency may then be investigated. 

 Furthermore, reducing the Reynolds number of each stream or even allowing the 

stream to become fully developed may increase impartment efficiency, 1st law efficiency, 

and effectiveness. The idea behind this is that a more cohesive stream tends to impart 

more of the energy stored within as seen with system 1 which had the smallest stream and 

a nozzle designed to reduce diffusion after exiting. This could be done by increasing the 

length of the nozzle to an extent which would allow for the stream to become more fully 

developed as is the case with modern waterjet cutter nozzles. 
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6.1. Tradeoffs Between Performance and LCA 

 Based on the model assessment, a correlation can also be found between 

increasing pressure and power requirements. This would seem to imply that increasing 

pressure serves to not only significantly increase losses due to irreversibilities, but also to 

increase the negative impact of the process from a global warming perspective. However, 

manipulation of equation 3-6 also shows that increased exit velocities may be obtained by 

reduction in cross-sectional area. This is in fact why system 2 had the lowest cost per 

hour to run but still had the highest sustained force output between the powered systems. 

The lower resource cost per hour then correlated to a lower green house gas emission 

value. Therefore, it should be a focus to reduce water and electricity consumption while 

increasing exit velocity in order to create the highest force output. 

 

6.2. Cell Analogy 

 In thermodynamic analysis of a system or cycle, boundaries are established in 

order to delimit the areas or components to be considered. This is done to establish 

independent analytical values for the component or device within the boundaries. As 

such, full analysis may be done starting at component level and moving upward in scale 

through the level of full system. This is typically done to assess how each component, 

sub assembly, or assembly affects  the system as a whole. Often there are concerns about 

the effect of any change upon  both the local and global efficiencies. Parts of the system 

can be targetted for design refinements aimed at increasing efficiency, performance, or 

utility. 
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 In this case, an organelle may be assessed which is a basic component of a cell 

which is in turn a basic component of an organ. The organelle, as a component to the 

entire system, would then be a factor in the overall system’s performance and efficiency 

ratings. Such dileneations would then prove useful in comparing similar levels of scale in 

the biological system to that of a thermodynamic system. 

 Analyzing a biological process in the terms a thermodynamic model requires that 

all inputs and outputs be quantified to determine all forms of mass and energy entering 

and exiting the boundaries of the system. Establishment of such parameters has been 

done on a series of processes with increasing complexity whereby each more complex 

system makes use of the systems before it. In this case, the most complex system, the 

heart, makes use of muscle cells for contraction, which are fueled by ATP created in 

mitochondria. The various inputs and outputs of each system are made available in Table 

13. 
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Table 13: Thermodynamic analysis of 3 biological systems 

 

Mitochondria19 

(organelle) 

Muscle Cell 20,21 

(cell) 

Heart22  

(organ) 

Input 
Glucose,6 O2, 36 

Phosphate, 36 ADP 

Creatine Phosphate, 

Glycogen, ATP 

75% Oxygen rich 

blood, O2(pulmonary 

stage), Contraction by 

cardiac muscle cells 

Output 
6 CO2, 6 H2O, 36 

ATP 

Contractive force, 

waste products 

from ATP 

generation 

97% Oxygen rich 

blood, waste products 

from muscle cells and 

mitochondria 

Gibbs Free Energy 

Efficiency 

50% 15 - 35% 15 - 25% 

Comparison Energy conversion External work 
Change in stream 

energy 
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 A relation can then be drawn that as a greater number of energy interactions occur 

a lower Gibbs free energy efficiency is obtained. When compared to systems 2 and 3 of 

the experimental assessment a similarity is also found. System 3 used a much greater 

amount of energy than system 2 and subsequently had a lower exergy efficiency. Because 

exergy efficiency and Gibbs free energy efficiency differ only in the reference states, this 

becomes an adequate manner for comparison. However, biological systems are not 

assessed for 1st law efficiency values and as such, nothing can be said of the comparison 

between how effectively the energy was utilized and if there are trends similar in the 

mechanical processes. Further research in this area could lead to the determination of 

relationships between efficiency and effectiveness of biological systems and would then 

allow for their comparisons to mechanical systems. 

 The end result of adaptation and evolution achieved by a biological system, in 

most cases the survivability in a set of environmental parameters, may lead toward an 

understanding regarding designing processes with higher effectiveness as a goal. The 

typical assessment of biological processes is done at a reference state of system 

temperature. Changing the reference state of the biological system's analysis from system 

temperature to ambient temperature would also serve to strengthen this argument if the 

same trends were found as those between exergy efficiency and Gibbs free energy with 

changes in complexity and energy usage types.  
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Chapter 7: Conclusions 

 

The energy-exergy efficiency model with the experimental validation provide the 

following insight into waterjet design: 

• Nozzle geometry, cross sectional area and design, greatly impact stream cohesion, 

impartment force, and to an extent regulate environmental impact. 

• Higher impartment efficiencies were nearly always the result of increased 

pressurization of the water stream but tended to reduce 1st law efficiency. 

Increasing pressure caused the water to impart the impact surface with kinetic 

energy more closely equivalent to expected values. 

• Higher exit velocity has a much greater impact on force output than mass flow 

rate. 

• Water consumption, while much more costly than electricity, results in 

substantially lower amounts of negative environmental impact. 

In comparison with biological systems at different scales, the following determinations 

were made: 

• Biological systems showed reductions in 2nd law efficiency as complexity 

increased similar to mechanical systems. 

• Biological systems have higher 2nd law efficiencies at optimum reaction 

temperatures. This should be explored in manufacturing processes. 
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Further recommendations: 

• Further comparison between other biological systems at the same scale could lead 

to more efficient and effective system design practices. 

• Testing at supersonic stream speeds could result in different conclusions and 

should be examined. 

•  Calculate ΔG values using ambient temperatures rather than system temperature 

and determine if there is an applicable effect on Gibbs free energy efficiency. 

• Determine 1st law efficiency of cellular and biological processes for comparison 

with Gibbs free energy efficiency which will allow for direct comparison to 

mechanical processes.  
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Appendix 1: Experimental Assessment Photos 
 

 

 

Figure 13: Volumetric Flow Meter (Gal) 
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Figure 14: Load Cell With Impact Plate & Mount 

 

 

Figure 15: Input Line Pressure Meter (psi) 
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Figure 16: Watts Up Electricity Meter 

 

 

 

Figure 17: Type J Thermocouple 
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Figure 18: Nozzle Comparison for Each System 

 

 

 

Figure 19: System Comparison 
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Figure 20: Experimental Test Stand Assembly 
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Appendix 2: Experimental Data 

Specific 
Volume 
(ft^3/lb) 

  
Pressure In 

(lb/in^2) 
  Pressure In (Pa) 

0.016023073   80   551580.583 
          

Specific 
Volume 

(m^3/kg) 
  

Kinematic 
Viscosity 

  Temp Surround (C) 

0.001000288   0.0000017   21.41 
          

Water Cost 
($/gal) 

        

0.005372751   Jet Ratio Turbo Ratio Adjustable Ratio 
    29.536862 25 12.75510204 

Electric Cost 
($/kWh) 

        

0.12844         

1800 PSI (Pa) Area in (in^2) Area in (m^2) 

12410563.1 0.306919643 0.000198012 
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  Trial Diameter (in) Diameter (m) Area (in^2) 

Jet 1 0.115 0.002921 0.010391071 
  2 0.115 0.002921 0.010391071 
  3 0.115 0.002921 0.010391071 
  4 0.115 0.002921 0.010391071 
  5 0.115 0.002921 0.010391071 
          
          

Pressure 
Washer Turbo 

1 0.125 0.003175 0.012276786 

  2 0.125 0.003175 0.012276786 
  3 0.125 0.003175 0.012276786 
  4 0.125 0.003175 0.012276786 
  5 0.125 0.003175 0.012276786 
          
          

Pressure 
Washer Adjust 

1 0.175 0.004445 0.0240625 

  2 0.175 0.004445 0.0240625 
  3 0.175 0.004445 0.0240625 
  4 0.175 0.004445 0.0240625 
  5 0.175 0.004445 0.0240625 
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  Trial 
Area 

(m^2) 

Mass 
Flow 
Rate 
(lb/s) 

Mass 
Flow 
Rate 

(Kg/s) 

Temp ( 
C ) 

Jet 1 6.7E-06 0.238332 0.108105 38.1 
  2 6.7E-06 0.238332 0.108105 38.1 
  3 6.7E-06 0.238332 0.108105 38.1 
  4 6.7E-06 0.238332 0.108105 38.1 
  5 6.7E-06 0.238332 0.108105 38.1 
            
            

Pressure 
Washer 
Turbo 

1 
7.92E-

06 
0.181369 0.082268 38.1 

  2 
7.92E-

06 
0.181369 0.082268 38.1 

  3 
7.92E-

06 
0.181369 0.082268 38.1 

  4 
7.92E-

06 
0.181369 0.082268 38.1 

  5 
7.92E-

06 
0.181369 0.082268 38.1 

            
            

Pressure 
Washer 
Adjust 

1 
1.55E-

05 
0.260718 0.11826 38.1 

  2 
1.55E-

05 
0.260718 0.11826 38.1 

  3 
1.55E-

05 
0.260718 0.11826 38.1 

  4 
1.55E-

05 
0.260718 0.11826 38.1 

  5 
1.55E-

05 
0.260718 0.11826 38.1 
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In Out Isentropic 

  Trial 
Internal 
Energy 
(kJ/kg) 

Exergy 
Destruction 

(J/s) 

Enthalpy 
(kJ/kg) 

Enthalpy 
(kJ/kg) 

Pressure 
Out 

(lb/in^2) 

Jet 1 159.2   159.7517 159.8173 304.2759 
  2 159.2   159.7517 159.731 304.2759 
  3 159.2   159.7517 159.6912 304.2759 
  4 159.2   159.7517 159.8173 304.2759 
  5 159.2   159.7517 159.7668 304.2759 
    Avg   159.7517 159.7647 304.2759 
    std dev   0 0.054945 0 

Pressure 
Washer 
Turbo 

1 159.2 22.86975 159.2189 159.5146 81.30888 

  2 159.2 21.76147 159.2164 159.4977 81.30888 
  3 159.2 19.63248 159.2215 159.4753 81.30888 
  4 159.2 14.88437 159.2126 159.405 81.30888 
  5 159.2 17.16662 159.2253 159.4472 81.30888 
    Avg 19.26294 159.2189 159.468 81.30888 
    std dev 3.276992 0.004809 0.043315 0 

Pressure 
Washer 
Adjust 

1 159.2 0.90819 159.2032 159.3634 32.07691 

  2 159.2 0.618026 159.2019 159.329 32.07691 
  3 159.2 0.763108 159.2045 159.3376 32.07691 
  4 159.2 0.980731 159.2032 159.3433 32.07691 
  5 159.2 0.806633 159.2013 159.3433 32.07691 
    Avg 0.815338 159.2028 159.3433 32.07691 

  
std dev 0.139384 0.001256 0.012657 0 
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Isentropic Gun Gun Peak Peak 

  Trial 
Pressure 
Out (Pa) 

Pressure 
Out 

(lb/in^2) 

Pressure 
Out (Pa) 

Pressure 
Out 

(lb/in^2) 

Pressure 
Out (Pa) 

Jet 1 2097876 - - 120.2975 829408.9 
  2 2097876 - - 99.12511 683432.9 
  3 2097876 - - 95.27559 656891.8 
  4 2097876 - - 116.4479 802867.8 
  5 2097876 - - 115.8705 798886.6 
  Avg 2097876     109.4033 754297.6 
  std dev 0     11.35086 78260.2 

Pressure 
Washer 
Turbo 

1 560596.2 2.746799 18938.22 475.702 3279798 

  2 560596.2 2.380559 16413.12 457.7817 3156244 
  3 560596.2 3.113039 21463.32 499.3242 3442665 
  4 560596.2 1.8312 12625.48 473.2583 3262950 
  5 560596.2 3.662399 25250.96 461.8545 3184325 
  Avg 560596.2 2.746799 18938.22 473.5841 3265197 
  std dev 0 0.6973 4807.639 16.23609 111942.1 

Pressure 
Washer 
Adjust 

1 221159.1 0.467143 3220.786 38.23436 263612.5 

  2 221159.1 0.280286 1932.471 51.94886 358169.2 
  3 221159.1 0.654 4509.1 54.02682 372496 
  4 221159.1 0.467143 3220.786 54.858 378226.7 
  5 221159.1 0.186857 1288.314 74.80636 515763.7 
  Avg 221159.1 0.411086 2834.291 54.77488 377653.6 

 
std dev 0 0.182126 1255.693 13.07098 90119.81 
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Isentropic Peak 

  
Sustained Sustained 

A1*Vel1 = 
A2*Vel2 

F=1/2mv^2 

  Trial 
Pressure 

Out 
(lb/in^2) 

Pressure 
Out (Pa) 

Velocity Out (m/s) 
Velocity Out 

(m/s) 

Jet 1 89.50131 617080.2 16.13039216 10.14236874 
  2 76.99037 530821.7 16.13039216 9.206679013 
  3 71.2161 491010 16.13039216 9.026138369 
  4 89.50131 617080.2 16.13039216 9.978771425 
  5 82.18722 566652.1 16.13039216 9.953999923 
  Avg 81.87926 564528.8 16.13039216 9.661591495 
  std dev 7.966969 54929.46 0 0.50695133 

Pressure 
Washer 
Turbo 

1 45.61526 314501.2 10.38966983 25.13044796 

  2 43.17158 297652.9 10.38966983 24.65255659 
  3 39.91335 275188.6 10.38966983 25.7468465 
  4 29.73137 204987.4 10.38966983 25.06581747 
  5 35.84056 247108.1 10.38966983 24.76197815 
  Avg 38.85442 267887.6 10.38966983 25.07152934 
  std dev 6.280555 43302.23 0 0.427468538 

Pressure 
Washer 
Adjust 

1 23.68868 163325.2 7.619969937 8.319245279 

  2 18.70159 128940.9 7.619969937 9.69717028 
  3 19.94836 137537 7.619969937 9.889212097 
  4 20.77954 143267.7 7.619969937 9.964992608 
  5 20.77954 143267.7 7.619969937 11.63660434 
  Avg 20.77954 143267.7 7.619969937 9.90144492 

 
std dev 1.8352 12653.06 0 1.178987911 
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Sustained 

   
  

F=1/2mv^2 
   

  Trial 
Velocity 

Out (m/s) 

Velocity 
in Gun 
(m/s) 

Velocity 
in (m/s) 

Power In 
(Watts) 

Jet 1 8.7483442   0.546111 0 
  2 8.113895   0.546111 0 
  3 7.8036943   0.546111 0 
  4 8.7483442   0.546111 0 
  5 8.3832675   0.546111 0 
  Avg 8.3595091   0.546111 0 
  std dev 0.409941   0 0 

Pressure 
Washer 
Turbo 

1 7.781939 4.027536 0.415587 728 

  2 7.5706251 3.749432 0.415587 729 
  3 7.2793374 4.28764 0.415587 727 
  4 6.282612 3.288469 0.415587 731 
  5 6.8979516 4.650598 0.415587 733 
  Avg 7.162493 4.000735 0.415587 729.6 
  std dev 0.5933192 0.518611 6.21E-17 2.408319 

Pressure 
Washer 
Adjust 

1 6.548283 1.939434 0.597406 1250 

  2 5.8183022 1.502279 0.597406 1245 
  3 6.0091166 2.294769 0.597406 1243 
  4 6.133029 1.939434 0.597406 1240 
  5 6.133029 1.226606 0.597406 1252 
  Avg 6.128352 1.780504 0.597406 1246 

 
std dev 0.2677377 0.41809 0 4.949747 
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Peak Peak Sustained Sustained Gun 

  Trial 
Force 

Out (lbf) 
Force 

Out (N) 
Force 

Out (lbf) 
Force 

Out (N) 
Force 

Out (lbf) 

Jet 1 1.25 5.560277 0.93 4.136846   
  2 1.03 4.581668 0.8 3.558577   
  3 0.99 4.403739 0.74 3.291684   
  4 1.21 5.382348 0.93 4.136846   
  5 1.204 5.355659 0.854 3.798781   
  Avg 1.1368 5.056738 0.8508 3.784547   
  std dev 0.117946 0.524649 0.082784 0.368242   

Pressure 
Washer 
Turbo 

1 5.84 25.97761 0.56 2.491004 0.15 

  2 5.62 24.99901 0.53 2.357557 0.13 
  3 6.13 27.2676 0.49 2.179629 0.17 
  4 5.81 25.84417 0.365 1.623601 0.1 
  5 5.67 25.22142 0.44 1.957218 0.2 
  Avg 5.814 25.86196 0.477 2.121802 0.15 
  std dev 0.199324 0.886637 0.077104 0.342975 0.038079 

Pressure 
Washer 
Adjust 

1 0.92 4.092364 0.57 2.535486 0.05 

  2 1.25 5.560277 0.45 2.0017 0.03 
  3 1.3 5.782688 0.48 2.135146 0.07 
  4 1.32 5.871653 0.5 2.224111 0.05 
  5 1.8 8.006799 0.5 2.224111 0.02 
  Avg 1.318 5.862756 0.5 2.224111 0.044 

 
std dev 0.314516 1.399035 0.044159 0.196428 0.019494 
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Gun No Loss Peak Peak Peak 

  Trial 
Force 

Out (N) 
Force 

Out (N) 
D 

Enthalpy 
KE 

Work In 
Calculated 

(Watts) 

Jet 1   14.06396 277.9083 129.9457 44.09124 
  2   14.06396 131.8903 129.9457 28.3059 
  3   14.06396 105.3416 129.9457 25.43583 
  4   14.06396 251.3596 129.9457 41.22118 
  5   14.06396 247.3772 129.9457 40.79067 
  Avg   14.06396 202.7754 129.9457 35.96896 
  std dev   1.99E-15 78.28274 0 8.462791 

Pressure 
Washer 
Turbo 

1 0.667233 4.440198 3261.799 53.88626 272.7735 

  2 0.578269 4.440198 3140.736 53.88626 262.8138 
  3 0.756198 4.440198 3422.187 53.88626 285.9682 
  4 0.444822 4.440198 3251.261 53.88626 271.9065 
  5 0.889644 4.440198 3159.984 53.88626 264.3974 
  Avg 0.667233 4.440198 3247.193 53.88626 271.5719 
  std dev 0.169383 0 111.57 7.94E-15 9.178598 

Pressure 
Washer 
Adjust 

1 0.222411 3.433309 260.4667 28.85352 34.2149 

  2 0.133447 3.433309 356.3393 28.85352 45.55275 
  3 0.311376 3.433309 368.0929 28.85352 46.94272 
  4 0.222411 3.433309 375.1139 28.85352 47.77302 
  5 0.088964 3.433309 514.6235 28.85352 64.27137 
  Avg 0.195722 3.433309 374.9273 28.85352 47.75095 

 
std dev 0.086712 4.97E-16 90.84122 0 10.74285 
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Peak Peak Peak Peak Peak 

  Trial 
Work 

Efficiency 
Vel 

Efficiency 
Vel^2 

Efficiency 
KE 

Efficiency 
Re 

Jet 1 #DIV/0! 62.87738 39.53566 39.53566 27715.81 
  2 #DIV/0! 57.0766 32.57738 32.57738 27715.81 
  3 #DIV/0! 55.95734 31.31224 31.31224 27715.81 
  4 #DIV/0! 61.86317 38.27051 38.27051 27715.81 
  5 #DIV/0! 61.7096 38.08074 38.08074 27715.81 
  Avg #DIV/0! 59.89682 35.95531 35.95531 27715.81 
  std dev #DIV/0! 3.142833 3.73045 3.73045 0 

Pressure 
Washer 
Turbo 

1 37.46888 241.8792 585.0554 585.0554 19404.24 

  2 36.05128 237.2795 563.0156 563.0156 19404.24 
  3 39.33538 247.812 614.1078 614.1078 19404.24 
  4 37.19651 241.2571 582.0499 582.0499 19404.24 
  5 36.07058 238.3327 568.0246 568.0246 19404.24 
  Avg 37.22453 241.3121 582.4507 582.4507 19404.24 
  std dev 1.343901 4.114361 19.96841 19.96841 0 

Pressure 
Washer 
Adjust 

1 2.737192 109.1769 119.1959 119.1959 19923.98 

  2 3.658855 127.26 161.951 161.951 19923.98 
  3 3.776566 129.7802 168.429 168.429 19923.98 
  4 3.852663 130.7747 171.0202 171.0202 19923.98 
  5 5.133496 152.7119 233.2094 233.2094 19923.98 
  Avg 3.831755 129.9407 170.7611 170.7611 19923.98 

 
std dev 0.855274 15.47234 40.74887 40.74887 0 

 

  



www.manaraa.com

Appendix 2 (Continued) 

69 

  
Sustained Sustained Sustained 

  

  Trial 
D 

Enthalpy 
KE 

Work In 
Calculated 

(Watts) 

Work in - 
Exergy 
(Watts) 

Exergy 
Efficiency 

Jet 1 65.51847 129.9457 21.13074     
  2 -20.7649 129.9457 11.80304     
  3 -60.588 129.9457 7.497943     
  4 65.51847 129.9457 21.13074     
  5 15.07589 129.9457 15.67762     
  Avg 12.95199 129.9457 15.44802     
  std dev 54.94528 0 5.939885     

Pressure 
Washer 
Turbo 

1 295.6481 53.88626 28.75535 5.885601 0.808462 

  2 281.3208 53.88626 27.57668 5.815211 0.797697 
  3 253.7983 53.88626 25.31247 5.679994 0.781292 
  4 192.4173 53.88626 20.2628 5.378432 0.735764 
  5 221.921 53.88626 22.69 5.523382 0.753531 
  Avg 249.0211 53.88626 24.91946 5.656524 0.775349 
  std dev 42.36323 7.94E-15 3.485121 0.208129 0.030308 

Pressure 
Washer 
Adjust 

1 160.1505 28.85352 22.35154 21.44335 1.715468 

  2 127.045 28.85352 18.4365 17.81847 1.431203 
  3 133.0662 28.85352 19.14856 18.38545 1.479119 
  4 140.0872 28.85352 19.97887 18.99813 1.532108 
  5 142.0203 28.85352 20.20746 19.40083 1.549587 
  Avg 140.4738 28.85352 20.02458 19.20925 1.541497 

 
std dev 12.49918 0 1.478148 1.386125 0.107791 
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Sustained Sustained Sustained Sustained 

  Trial 
Work 

Efficiency 
Vel 

Efficiency 
Vel^2 

Efficiency 
KE 

Efficiency 

Jet 1   54.23516 29.41453 29.41453 
  2   50.30191 25.30282 25.30282 
  3   48.37883 23.40511 23.40511 
  4   54.23516 29.41453 29.41453 
  5   51.97188 27.01076 27.01076 
  Avg   51.82459 26.90955 26.90955 
  std dev   2.54142 2.618338 2.618338 

Pressure 
Washer 
Turbo 

1 3.949911 74.90073 56.1012 56.1012 

  2 3.782809 72.86685 53.09578 53.09578 
  3 3.48177 70.06322 49.08855 49.08855 
  4 2.771929 60.46979 36.56596 36.56596 
  5 3.095498 66.3924 44.07951 44.07951 
  Avg 3.416384 68.9386 47.7862 47.7862 
  std dev 0.48515 5.710664 7.724316 7.724316 

Pressure 
Washer 
Adjust 

1 1.788123 85.93581 73.84964 73.84964 

  2 1.480843 76.35597 58.30235 58.30235 
  3 1.540512 78.86011 62.18917 62.18917 
  4 1.611199 80.48626 64.78038 64.78038 
  5 1.614015 80.48626 64.78038 64.78038 
  Avg 1.606938 80.42488 64.78038 64.78038 

 
std dev 0.115335 3.513631 5.721249 5.721249 
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